Friday, 18 October 2013

Molecular orbital

In chemistry, a molecular orbital (or MO) is a mathematical function describing the wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The term orbital was introduced by Robert S. Mulliken in 1932 as an abbreviation for one-electron orbital wave function.[1] It has since been equated with the region generated with the function. Molecular orbitals are usually constructed by combining atomic orbitals or hybrid orbitals from each atom of the molecule, or other molecular orbitals from groups of atoms. They can be quantitatively calculated using the Hartree–Fock or self-consistent field (SCF) methods.

Overview

Molecular orbitals (MOs) represent regions in a molecule where an electron is likely to be found. Molecular orbitals are obtained from the combination of atomic orbitals, which predict the location of an electron in an atom. A molecular orbital can specify the electron configuration of a molecule: the spatial distribution and energy of one (or one pair of) electron(s). Most commonly an MO is represented as a linear combination of atomic orbitals (the LCAO-MO method), especially in qualitative or very approximate usage. They are invaluable in providing a simple model of bonding in molecules, understood through molecular orbital theory. Most present-day methods in computational chemistry begin by calculating the MOs of the system. A molecular orbital describes the behavior of one electron in the electric field generated by the nuclei and some average distribution of the other electrons. In the case of two electrons occupying the same orbital, the Pauli principle demands that they have opposite spin. Necessarily this is an approximation, and highly accurate descriptions of the molecular electronic wave function do not have orbitals (see configuration interaction).

Formation of molecular orbitals

Molecular orbitals arise from allowed interactions between atomic orbitals, which are allowed if the symmetries (determined from group theory) of the atomic orbitals are compatible with each other. Efficiency of atomic orbital interactions is determined from the overlap (a measure of how well two orbitals constructively interact with one another) between two atomic orbitals, which is significant if the atomic orbitals are close in energy. Finally, the number of molecular orbitals that form must equal the number of atomic orbitals in the atoms being combined to form the molecule.

Qualitative discussion

For an imprecise, but qualitatively useful, discussion of the molecular structure, the molecular orbitals can be obtained from the "Linear combination of atomic orbitals molecular orbital method" ansatz. Here, the molecular orbitals are expressed as linear combinations of atomic orbitals.

Linear combinations of atomic orbitals (LCAO)

Molecular orbitals were first introduced by Friedrich Hund[2][3] and Robert S. Mulliken[4][5] in 1927 and 1928.[6][7] The linear combination of atomic orbitals or "LCAO" approximation for molecular orbitals was introduced in 1929 by Sir John Lennard-Jones.[8] His ground-breaking paper showed how to derive the electronic structure of the fluorine and oxygen molecules from quantum principles. This qualitative approach to molecular orbital theory is part of the start of modern quantum chemistry. Linear combinations of atomic orbitals (LCAO) can be used to estimate the molecular orbitals that are formed upon bonding between the molecule’s constituent atoms. Similar to an atomic orbital, a Schrödinger equation, which describes the behavior of an electron, can be constructed for a molecular orbital as well. Linear combinations of atomic orbitals, or the sums and differences of the atomic wavefunctions, provide approximate solutions to the molecular Schrödinger equations. For simple diatomic molecules, the obtained wavefunctions are represented mathematically by the equations
\Psi = c_a \psi_a + c_b \psi_b
\Psi^* = c_a \psi_a - c_b \psi_b
where \Psi and \Psi^* are the molecular wavefunctions for the bonding and antibonding molecular orbitals, respectively, \psi_a and \psi_b are the atomic wavefunctions from atoms a and b, respectively, and c_a and c_b are adjustable coefficients. These coefficients can be positive or negative, depending on the energies and symmetries of the individual atomic orbitals. As the two atoms become closer together, their atomic orbitals overlap to produce areas of high electron density, and, as a consequence, molecular orbitals are formed between the two atoms. The atoms are held together by the electrostatic attraction between the positively charged nuclei and the negatively charged electrons occupying bonding molecular orbitals.[9]

Bonding, antibonding, and nonbonding MOs

When atomic orbitals interact, the resulting molecular orbital can be of three types: bonding, antibonding, or nonbonding.
Bonding MOs:
  • Bonding interactions between atomic orbitals are constructive (in-phase) interactions.
  • Bonding MOs are lower in energy than the atomic orbitals that combine to produce them.
Antibonding MOs:
  • Antibonding interactions between atomic orbitals are destructive (out-of-phase) interactions, with a nodal plane where the wavefunction of the antibonding orbital is zero between the two interacting atoms
  • Antibonding MOs are higher in energy than the atomic orbitals that combine to produce them.
Nonbonding MOs:
  • Nonbonding MOs are the result of no interaction between atomic orbitals because of lack of compatible symmetries.
  • Nonbonding MOs will have the same energy as the atomic orbitals of one of the atoms in the molecule.

Sigma and pi labels for MOs

The type of interaction between atomic orbitals can be further categorized by the molecular-orbital symmetry labels σ (sigma), π (pi), δ (delta), φ (phi), γ (gamma) etc. paralleling the symmetry of the atomic orbitals s, p, d, f and g. The number of nodal planes containing the internuclear axis between the atoms concerned is zero for σ MOs, one for π, two for δ, etc.

σ Symmetry

A MO with σ symmetry results from the interaction of either two atomic s-orbitals or two atomic pz-orbitals. An MO will have σ-symmetry if the orbital is symmetrical with respect to the axis joining the two nuclear centers, the internuclear axis. This means that rotation of the MO about the internuclear axis does not result in a phase change. A σ* orbital, sigma antibonding orbital, also maintains the same phase when rotated about the internuclear axis. The σ* orbital has a nodal plane that is between the nuclei and perpendicular to the internuclear axis.[10]

π Symmetry

A MO with π symmetry results from the interaction of either two atomic px orbitals or py orbitals. An MO will have π symmetry if the orbital is asymmetrical with respect to rotation about the internuclear axis. This means that rotation of the MO about the internuclear axis will result in a phase change. There is one nodal plane containing the internuclear axis, if real orbitals are considered.
A π* orbital, pi antibonding orbital, will also produce a phase change when rotated about the internuclear axis. The π* orbital also has a second nodal plane between the nuclei.[11][12][13][14]

δ Symmetry

A MO with δ symmetry results from the interaction of two atomic dxy or dx2-y2 orbitals. Because these molecular orbitals involve low-energy d atomic orbitals, they are seen in transition-metal complexes. A δ bonding orbital has two nodal planes containing the internuclear axis, and a δ* antibonding orbital also has a third nodal plane between the nuclei.

φ Symmetry

Suitably aligned f atomic orbitals overlap to form phi molecular orbital (a phi bond)
Theoretical chemists have conjectured that higher-order bonds, such as phi bonds corresponding to overlap of f atomic orbitals, are possible. There is as of 2005 only one known example of a molecule purported to contain a phi bond (a U−U bond, in the molecule U2).[15]

Gerade and ungerade symmetry

For molecules that possess a center of inversion (centrosymmetric molecules) there are additional labels of symmetry that can be applied to molecular orbitals. Centrosymmetric molecules include:
Non-centrosymmetric molecules include:
If inversion through the center of symmetry in a molecule results in the same phases for the molecular orbital, then the MO is said to have gerade, g, symmetry. If inversion through the center of symmetry in a molecule results in a phase change for the molecular orbital, then the MO is said to have ungerade, u, symmetry. For a bonding MO with σ-symmetry, the orbital is σg (s' + s'' is symmetric), while an antibonding MO with σ-symmetry the orbital is σu, because inversion of s' – s'' is antisymmetric. For a bonding MO with π-symmetry the orbital is πu because inversion through the center of symmetry for would produce a sign change (the two p atomic orbitals are in phase with each other but the two lobes have opposite signs), while an antibonding MO with π-symmetry is πg because inversion through the center of symmetry for would not produce a sign change (the two p orbitals are antisymmetric by phase).[16]

MO diagrams

The qualitative approach of MO analysis uses a molecular orbital diagram to visualize bonding interactions in a molecule. In this type of diagram, the molecular orbitals are represented by horizontal lines; the higher a line the higher the energy of the orbital, and degenerate orbitals are placed on the same level with a space between them. Then, the electrons to be placed in the molecular orbitals are slotted in one by one, keeping in mind the Pauli exclusion principle and Hund's rule of maximum multiplicity (only 2 electrons, having opposite spins, per orbital; place as many unpaired electrons on one energy level as possible before starting to pair them). For more complicated molecules, the wave mechanics approach loses utility in a qualitative understanding of bonding (although is still necessary for a quantitative approach). Some properties:
  • A basis set of orbitals includes those atomic orbitals that are available for molecular orbital interactions, which may be bonding or antibonding
  • The number of molecular orbitals is equal to the number of atomic orbitals included in the linear expansion or the basis set
  • If the molecule has some symmetry, the degenerate atomic orbitals (with the same atomic energy) are grouped in linear combinations (called symmetry-adapted atomic orbitals (SO)), which belong to the representation of the symmetry group, so the wave functions that describe the group are known as symmetry-adapted linear combinations (SALC).
  • The number of molecular orbitals belonging to one group representation is equal to the number of symmetry-adapted atomic orbitals belonging to this representation
  • Within a particular representation, the symmetry-adapted atomic orbitals mix more if their atomic energy levels are closer.

Bonding in molecular orbitals

Orbital degeneracy

Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the px and the py atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy).[17]

Ionic bonds

When the energy difference between the atomic orbitals of two atoms is quite large, one atom's orbitals contribute almost entirely to the bonding orbitals, and the others atom’s orbitals contribute almost entirely to the antibonding orbitals. Thus, the situation is effectively that some electrons have been transferred from one atom to the other. This is called an (mostly) ionic bond.

Bond order

The bond order, or number of bonds, of a molecule can be determined by combining the number of electrons in bonding and antibonding molecular orbitals. A pair of electrons in a bonding orbital creates a bond, whereas a pair of electrons in an antibonding orbital negates a bond. For example, N2, with eight electrons in bonding orbitals and two electrons in antibonding orbitals, has a bond order of three, which constitutes a triple bond.
Bond strength is proportional to bond order—a greater amount of bonding produces a more stable bond—and bond length is inversely proportional to it—a stronger bond is shorter.
There are rare exceptions to the requirement of molecule having a positive bond order. Although Be2 has a bond order of 0 according to MO analysis, there is experimental evidence of a highly unstable Be2 molecule having a bond length of 245 pm and bond energy of 10 kJ/mol.[18]

HOMO and LUMO

The highest occupied molecular orbital and lowest unoccupied molecular orbital are often referred to as the HOMO and LUMO, respectively. The difference of the energies of the HOMO and LUMO, termed the band gap, can sometimes serve as a measure of the excitability of the molecule: The smaller the energy the more easily it will be excited.

Molecular orbital examples

Homonuclear diatomics

Homonuclear diatomic MOs contain equal contributions from each atomic orbital in the basis set. This is shown in the homonuclear diatomic MO diagrams for H2, He2, and Li2, all of which containing symmetric orbitals.[19]

H2

Electron wavefunctions for the 1s orbital of a lone hydrogen atom (left and right) and the corresponding bonding (bottom) and antibonding (top) molecular orbitals of the H2 molecule. The real part of the wavefunction is the blue curve, and the imaginary part is the red curve. The red dots mark the locations of the nuclei. The electron wavefunction oscillates according to the Schrödinger wave equation, and orbitals are its standing waves. The standing wave frequency is proportional to the orbital's kinetic energy. (This plot is a one-dimensional slice through the three-dimensional system.)
As a simple MO example consider the hydrogen molecule, H2 (see molecular orbital diagram), with the two atoms labelled H' and H". The lowest-energy atomic orbitals, 1s' and 1s", do not transform according to the symmetries of the molecule. However, the following symmetry adapted atomic orbitals do:
1s' – 1s" Antisymmetric combination: negated by reflection, unchanged by other operations
1s' + 1s" Symmetric combination: unchanged by all symmetry operations
The symmetric combination (called a bonding orbital) is lower in energy than the basis orbitals, and the antisymmetric combination (called an antibonding orbital) is higher. Because the H2 molecule has two electrons, they can both go in the bonding orbital, making the system lower in energy (and, hence, more stable) than two free hydrogen atoms. This is called a covalent bond. The bond order is equal to the number of bonding electrons minus the number of antibonding electrons, divided by 2. In this example, there are 2 electrons in the bonding orbital and none in the antibonding orbital; the bond order is 1, and there is a single bond between the two hydrogen atoms.

He2

On the other hand, consider the hypothetical molecule of He2 with the atoms labeled He' and He". As with H2, the lowest-energy atomic orbitals are the 1s' and 1s", and do not transform according to the symmetries of the molecule, while the symmetry adapted atomic orbitals do. The symmetric combination—the bonding orbital—is lower in energy than the basis orbitals, and the antisymmetric combination—the antibonding orbital—is higher. Unlike H2, with two valence electrons, He2 has four in its neutral ground state. Two electrons fill the lower-energy bonding orbital, σg(1s), while the remaining two fill the higher-energy antibonding orbital, σu*(1s). Thus, the resulting electron density around the molecule does not support the formation of a bond between the two atoms; without a stable bond holding the atoms together, molecule would not be expected to exist. Another way of looking at it is that there are two bonding electrons and two antibonding electrons; therefore, the bond order is 0 and no bond exists.

Li2

Dilithium Li2 is formed from the overlap of the 1s and 2s atomic orbitals (the basis set) of two Li atoms. Each Li atom contributes three electrons for bonding interactions, and the six electrons fill the three MOs of lowest energy, σg(1s), σu*(1s), and σg(2s). Using the equation for bond order, it is found that dilithium has a bond order of one, a single bond.

Noble gases

Considering a hypothetical molecule of He2, since the basis set of atomic orbitals is the same as in the case of H2, we find that both the bonding and antibonding orbitals are filled, so there is no energy advantage to the pair. HeH would have a slight energy advantage, but not as much as H2 + 2 He, so the molecule is very unstable and exists only briefly before decomposing into hydrogen and helium. In general, we find that atoms such as He that have full energy shells rarely bond with other atoms. Except for short-lived Van der Waals complexes, there are very few noble gas compounds known.

Heteronuclear diatomics

While MOs for homonuclear diatomic molecules contain equal contributions from each interacting atomic orbital, MOs for heteronuclear diatomics contain different atomic orbital contributions. Orbital interactions to produce bonding or antibonding orbitals in heteronuclear diatomics occur if there is sufficient overlap between atomic orbitals as determined by their symmetries and similarity in orbital energies.

HF

In hydrogen fluoride HF overlap between the H 1s and F 2s orbitals is allowed by symmetry but the difference in energy between the two atomic orbitals prevents them from interacting to create a molecular orbital. Overlap between the H 1s and F 2pz orbitals is also symmetry allowed, and these two atomic orbitals have a small energy separation. Thus, they interact, leading to creation of σ and σ* MOs and a molecule with a bond order of 1. Since HF is a non-centrosymmetric molecule, the symmetry labels g and u do not apply to its molecular orbitals.[20]

Quantitative approach

To obtain quantitative values for the molecular energy levels, one needs to have molecular orbitals that are such that the configuration interaction (CI) expansion converges fast towards the full CI limit. The most common method to obtain such functions is the Hartree–Fock method, which expresses the molecular orbitals as eigenfunctions of the Fock operator. One usually solves this problem by expanding the molecular orbitals as linear combinations of Gaussian functions centered on the atomic nuclei (see linear combination of atomic orbitals and basis set (chemistry)). The equation for the coefficients of these linear combinations is a generalized eigenvalue equation known as the Roothaan equations, which are in fact a particular representation of the Hartree-Fock equation. There are a number of programs in which quantum chemical calculations of MOs can be performed, including Spartan and HyperChem.
Simple accounts often suggest that experimental molecular orbital energies can be obtained by the methods of ultra-violet photoelectron spectroscopy for valence orbitals and X-ray photoelectron spectroscopy for core orbitals. This, however, is incorrect as these experiments measure the ionization energy, the difference in energy between the molecule and one of the ions resulting from the removal of one electron. Ionization energies are linked approximately to orbital energies by Koopmans' theorem. While the agreement between these two values can be close for some molecules, it can be very poor in other cases.


BCS theory

BCS theory is the first microscopic theory of superconductivity since its discovery in 1911. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs into a boson-like state. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus. It was proposed by John Bardeen, Leon Neil Cooper, and John Robert Schrieffer ("BCS") in 1957.

History

Rapid progress in understanding superconductivity gained momentum in the mid-1950s. It began in the 1948 paper, "On the Problem of the Molecular Theory of Superconductivity"[1] where Fritz London proposed that the phenomenological London equations may be consequences of the coherence of a quantum state. In 1953, Brian Pippard, motivated by penetration experiments, proposed that this would modify the London equations via a new scale parameter called the coherence length. John Bardeen then argued in the 1955 paper, "Theory of the Meissner Effect in Superconductors"[2] that such a modification naturally occurs in a theory with an energy gap. The key ingredient was Leon Neil Cooper's calculation of the bound states of electrons subject to an attractive force in his 1956 paper, "Bound Electron Pairs in a Degenerate Fermi Gas".[3]
In 1957 Bardeen and Cooper assembled these ingredients and constructed such a theory, the BCS theory, with Robert Schrieffer. The theory was first published in April 1957 in the letter, "Microscopic theory of superconductivity".[4] The demonstration that the phase transition is second order, that it reproduces the Meissner effect and the calculations of specific heats and penetration depths appeared in the December 1957 article, "Theory of superconductivity".[5] They received the Nobel Prize in Physics in 1972 for this theory. The 1950 Landau-Ginzburg theory of superconductivity is not cited in either of the BCS papers.
In 1986, high-temperature superconductivity was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that BCS theory alone cannot explain this phenomenon and that other effects are at play.[6] These effects are still not yet fully understood; it is possible that they even control superconductivity at low temperatures for some materials.

Overview

At sufficiently low temperatures, electrons near the Fermi surface become unstable against the formation of Cooper pairs. Cooper showed such binding will occur in the presence of an attractive potential, no matter how weak. In conventional superconductors, an attraction is generally attributed to an electron-lattice interaction. The BCS theory, however, requires only that the potential be attractive, regardless of its origin. In the BCS framework, superconductivity is a macroscopic effect which results from the condensation of Cooper pairs. These have some bosonic properties, while bosons, at sufficiently low temperature, can form a large Bose-Einstein condensate. Superconductivity was simultaneously explained by Nikolay Bogoliubov, by means of the so-called Bogoliubov transformations.
In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the phonons). Roughly speaking the picture is the following:
An electron moving through a conductor will attract nearby positive charges in the lattice. This deformation of the lattice causes another electron, with opposite spin, to move into the region of higher positive charge density. The two electrons then become correlated. Because there are a lot of such electron pairs in a superconductor, these pairs overlap very strongly and form a highly collective condensate. In this "condensed" state, the breaking of one pair will change the energy of the entire condensate - not just a single electron, or a single pair. Thus, the energy required to break any single pair is related to the energy required to break all of the pairs (or more than just two electrons). Because the pairing increases this energy barrier, kicks from oscillating atoms in the conductor (which are small at sufficiently low temperatures) are not enough to affect the condensate as a whole, or any individual "member pair" within the condensate. Thus the electrons stay paired together and resist all kicks, and the electron flow as a whole (the current through the superconductor) will not experience resistance. Thus, the collective behavior of the condensate is a crucial ingredient necessary for superconductivity.

More details

BCS theory starts from the assumption that there is some attraction between electrons, which can overcome the Coulomb repulsion. In most materials (in low temperature superconductors), this attraction is brought about indirectly by the coupling of electrons to the crystal lattice (as explained above). However, the results of BCS theory do not depend on the origin of the attractive interaction. For instance, Cooper pairs have been observed in ultracold gases of Fermions where a homogeneous magnetic field has been tuned to their Feshbach resonance. The original results of BCS (discussed below) described an s-wave superconducting state, which is the rule among low-temperature superconductors but is not realized in many unconventional superconductors such as the d-wave high-temperature superconductors. Extensions of BCS theory exist to describe these other cases, although they are insufficient to completely describe the observed features of high-temperature superconductivity.
BCS is able to give an approximation for the quantum-mechanical many-body state of the system of (attractively interacting) electrons inside the metal. This state is now known as the BCS state. In the normal state of a metal, electrons move independently, whereas in the BCS state, they are bound into Cooper pairs by the attractive interaction. The BCS formalism is based on the reduced potential for the electrons attraction. Within this potential, a variational ansatz for the wave function is proposed. This ansatz was later shown to be exact in the dense limit of pairs. Note that the continuous crossover between the dilute and dense regimes of attracting pairs of fermions is still an open problem, which now attracts a lot of attention within the field of ultracold gases.

Underlying evidence

The hyperphysics website pages at Georgia State University summarize some key background to BCS theory as follows:[7]
  • Evidence of a band gap at the Fermi level (described as "a key piece in the puzzle") - the existence of a critical temperature and critical magnetic field implied a band gap, and suggested a phase transition, but single electrons are forbidden from condensing to the same energy level by the Pauli exclusion principle. The site comments that "a drastic change in conductivity demanded a drastic change in electron behavior". Conceivably, pairs of electrons might perhaps act like bosons instead, which are bound by different condensate rules and do not have the same limitation.
  • Isotope effect on the critical temperature, suggesting lattice interactions.
  • An exponential rise in heat capacity near the critical temperature for some superconductors - An exponential increase in heat capacity near the critical temperature also suggests an energy bandgap for the superconducting material. As superconducting vanadium is warmed toward its critical temperature, its heat capacity increases massively in a very few degrees; this suggests an energy gap being bridged by thermal energy.
  • The lessening of the measured energy gap towards the critical temperature - this suggests a type of situation where some kind of binding energy exists but it is gradually weakened as the critical temperature is approached. A binding energy suggests two or more particles or other entities that are bound together in the superconducting state. This helped to support the idea of bound particles - specifically electron pairs - and together with the above helped to paint a general picture of paired electrons and their lattice interactions.

Successes of the BCS theory

BCS derived several important theoretical predictions that are independent of the details of the interaction, since the quantitative predictions mentioned below hold for any sufficiently weak attraction between the electrons and this last condition is fulfilled for many low temperature superconductors - the so-called weak-coupling case. These have been confirmed in numerous experiments:
  • The electrons are bound into Cooper pairs, and these pairs are correlated due to the Pauli exclusion principle for the electrons, from which they are constructed. Therefore, in order to break a pair, one has to change energies of all other pairs. This means there is an energy gap for single-particle excitation, unlike in the normal metal (where the state of an electron can be changed by adding an arbitrarily small amount of energy). This energy gap is highest at low temperatures but vanishes at the transition temperature when superconductivity ceases to exist. The BCS theory gives an expression that shows how the gap grows with the strength of the attractive interaction and the (normal phase) single particle density of states at the Fermi level. Furthermore, it describes how the density of states is changed on entering the superconducting state, where there are no electronic states any more at the Fermi level. The energy gap is most directly observed in tunneling experiments[8] and in reflection of microwaves from superconductors.
  • BCS theory predicts the dependence of the value of the energy gap E at temperature T on the critical temperature Tc. The ratio between the value of the energy gap at zero temperature and the value of the superconducting transition temperature (expressed in energy units) takes the universal value of 3.5, independent of material. Near the critical temperature the relation asymptotes to
E=3.52k_BT_c\sqrt{1-(T/T_c)}
which is of the form suggested the previous year by M. J. Buckingham in Very High Frequency Absorption in Superconductors based on the fact that the superconducting phase transition is second order, that the superconducting phase has a mass gap and on Blevins, Gordy and Fairbank's experimental results the previous year on the absorption of millimeter waves by superconducting tin.
  • Due to the energy gap, the specific heat of the superconductor is suppressed strongly (exponentially) at low temperatures, there being no thermal excitations left. However, before reaching the transition temperature, the specific heat of the superconductor becomes even higher than that of the normal conductor (measured immediately above the transition) and the ratio of these two values is found to be universally given by 2.5.
  • BCS theory correctly predicts the Meissner effect, i.e. the expulsion of a magnetic field from the superconductor and the variation of the penetration depth (the extent of the screening currents flowing below the metal's surface) with temperature. This had been demonstrated experimentally by Walther Meissner and Robert Ochsenfeld in their 1933 article Ein neuer Effekt bei Eintritt der Supraleitfähigkeit.
  • It also describes the variation of the critical magnetic field (above which the superconductor can no longer expel the field but becomes normal conducting) with temperature. BCS theory relates the value of the critical field at zero temperature to the value of the transition temperature and the density of states at the Fermi level.
  • In its simplest form, BCS gives the superconducting transition temperature Tcin terms of the electron-phonon coupling potential V and the Debye cutoff energy ED:[5]
k_B\,T_c = 1.14E_D\,{e^{-1/N(0)\,V}},
where N(0) is the electronic density of states at the Fermi level. For more details, see Cooper pairs.
  • The BCS theory reproduces the isotope effect, which is the experimental observation that for a given superconducting material, the critical temperature is inversely proportional to the mass of the isotope used in the material. The isotope effect was reported by two groups on the 24th of March 1950, who discovered it independently working with different mercury isotopes, although a few days before publication they learned of each other's results at the ONR conference in Atlanta, Georgia. The two groups are Emanuel Maxwell, who published his results in Isotope Effect in the Superconductivity of Mercury and C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt who published their results 10 pages later in Superconductivity of Isotopes of Mercury. The choice of isotope ordinarily has little effect on the electrical properties of a material, but does affect the frequency of lattice vibrations. This effect suggests that superconductivity is related to vibrations of the lattice. This is incorporated into BCS theory, where lattice vibrations yield the binding energy of electrons in a Cooper pair.

Particle radiation

Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam.
Due to the wave-particle duality, all moving particles also have wave character. Higher energy particles more easily exhibit particle characteristics, while lower energy particles more easily exhibit wave characteristics.

Types and production

Particles can be electrically charged or uncharged:
Particle radiation can be emitted by an unstable atomic nucleus (via radioactive decay), or it can be the product from some other kind of nuclear reaction. Many types of particles may be emitted:
Mechanisms that produce particle radiation include:
Charged particles (electrons, mesons, protons, alpha particles, heavier HZE ions, etc.) can be produced by particle accelerators. Ion irradiation is widely used in the semiconductor industry to introduce dopants into materials, a method known as ion implantation.
Particle accelerators can also produce neutrino beams. Neutron beams are mostly produced by nuclear reactors. For the production of electromagnetic radiation, there are many methods, depending upon the wave length (see electromagnetic spectrum).

Passage through matter

From the standpoint of radiation protection, radiation is often separated into two categories, ionizing and non-ionizing, to denote the level of danger posed to humans. Ionization is the process of removing electrons from atoms, leaving two electrically charged particles (an electron and a positively charged ion) behind. The negatively charged electrons and positively charged ions created by ionizing radiation may cause damage in living tissue. Basically, a particle is ionizing if its energy is higher than the ionization energy of a typical substance, i.e., a few eV, and interacts with electrons significantly.
According to the International Commission on Non-Ionizing Radiation Protection, electromagnetic radiations from ultraviolet to infrared, to radiofrequency (including microwave) radiation, static and time-varying electric and magnetic fields, and ultrasound belong to the non-ionizing radiations.
The charged particles mentioned above all belong to the ionizing radiations. When passing through matter, they ionize and thus lose energy in many small steps. The distance to the point where the charged particle has lost all its energy is called the range of the particle. The range depends upon the type of particle, its initial energy, and the material it traverses. Similarly, the energy loss per unit path length, the 'stopping power', depends on the type and energy of the charged particle and upon the material. The stopping power and hence, the density of ionization, usually increases toward the end of range and reaches a maximum, the Bragg Peak, shortly before the energy drops to zero.

Wavelength

In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.[1] It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns.[2][3] Wavelength is commonly designated by the Greek letter lambda (λ). The concept can also be applied to periodic waves of non-sinusoidal shape.[1][4] The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.[5] The SI unit of wavelength is the meter.
Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to frequency of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.[6]
Examples of wave-like phenomena are sound waves, light, and water waves. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic field vary. Water waves are variations in the height of a body of water. In a crystal lattice vibration, atomic positions vary.
Wavelength is a measure of the distance between repetitions of a shape feature such as peaks, valleys, or zero-crossings, not a measure of how far any given particle moves. For example, in sinusoidal waves over deep water a particle near the water's surface moves in a circle of the same diameter as the wave height, unrelated to wavelength.[7]

Sinusoidal waves

In linear media, any wave pattern can be described in terms of the independent propagation of sinusoidal components. The wavelength λ of a sinusoidal waveform traveling at constant speed v is given by[8]
\lambda = \frac{v}{f},
where v is called the phase speed (magnitude of the phase velocity) of the wave and f is the wave's frequency. In a dispersive medium, the phase speed itself depends upon the frequency of the wave, making the relationship between wavelength and frequency nonlinear.
In the case of electromagnetic radiation—such as light—in free space, the phase speed is the speed of light, about 3×108 m/s. Thus the wavelength of a 100 MHz electromagnetic (radio) wave is about: 3×108 m/s divided by 108 Hz = 3 metres. The wavelength of visible light ranges from deep red, roughly 700 nm, to violet, roughly 400 nm (for other examples, see electromagnetic spectrum).
For sound waves in air, the speed of sound is 343 m/s (at room temperature and atmospheric pressure). The wavelengths of sound frequencies audible to the human ear (20 Hz–20 kHz) are thus between approximately 17 m and 17 mm, respectively. Note that the wavelengths in audible sound are much longer than those in visible light.
Sinusoidal standing waves in a box that constrains the end points to be nodes will have an integer number of half wavelengths fitting in the box.
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue)

Standing waves

A standing wave is an undulatory motion that stays in one place. A sinusoidal standing wave includes stationary points of no motion, called nodes, and the wavelength is twice the distance between nodes.
The upper figure shows three standing waves in a box. The walls of the box are considered to require the wave to have nodes at the walls of the box (an example of boundary conditions) determining which wavelengths are allowed. For example, for an electromagnetic wave, if the box has ideal metal walls, the condition for nodes at the walls results because the metal walls cannot support a tangential electric field, forcing the wave to have zero amplitude at the wall.
The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities.[9] Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the speed of light can be determined from observation of standing waves in a metal box containing an ideal vacuum.

Mathematical representation

Traveling sinusoidal waves are often represented mathematically in terms of their velocity v (in the x direction), frequency f and wavelength λ as:
  y (x, \ t) = A \cos \left( 2 \pi \left( \frac{x}{\lambda } - ft \right ) \right )  = A \cos \left( \frac{2 \pi}{\lambda} (x - vt) \right )
where y is the value of the wave at any position x and time t, and A is the amplitude of the wave. They are also commonly expressed in terms of wavenumber k (2π times the reciprocal of wavelength) and angular frequency ω (2π times the frequency) as:
  y (x, \ t) = A \cos \left( kx - \omega t \right)  = A \cos \left(k(x - v t) \right)
in which wavelength and wavenumber are related to velocity and frequency as:
 k = \frac{2 \pi}{\lambda} = \frac{2 \pi f}{v} = \frac{\omega}{v},
or
 \lambda = \frac{2 \pi}{k} = \frac{2 \pi v}{\omega} = \frac{v}{f}.
In the second form given above, the phase (kxωt) is often generalized to (krωt), by replacing the wavenumber k with a wave vector that specifies the direction and wavenumber of a plane wave in 3-space, parameterized by position vector r. In that case, the wavenumber k, the magnitude of k, is still in the same relationship with wavelength as shown above, with v being interpreted as scalar speed in the direction of the wave vector. The first form, using reciprocal wavelength in the phase, does not generalize as easily to a wave in an arbitrary direction.
Generalizations to sinusoids of other phases, and to complex exponentials, are also common; see plane wave. The typical convention of using the cosine phase instead of the sine phase when describing a wave is based on the fact that the cosine is the real part of the complex exponential in the wave
A e^{ i \left( kx - \omega t \right)}.

General media

Wavelength is decreased in a medium with slower propagation.
Refraction: upon entering a medium where its speed is lower, the wave changes direction.
Separation of colors by a prism (click for animation)
The speed of a wave depends upon the medium in which it propagates. In particular, the speed of light in a medium is less than in vacuum, which means that the same frequency will correspond to a shorter wavelength in the medium than in vacuum, as shown in the figure at right.
This change in speed upon entering a medium causes refraction, or a change in direction of waves that encounter the interface between media at an angle.[10] For electromagnetic waves, this change in the angle of propagation is governed by Snell's law.
The wave velocity in one medium not only may differ from that in another, but the velocity typically varies with wavelength. As a result, the change in direction upon entering a different medium changes with the wavelength of the wave.
For electromagnetic waves the speed in a medium is governed by its refractive index according to
v = \frac{c}{n(\lambda_0)},
where c is the speed of light in vacuum and n0) is the refractive index of the medium at wavelength λ0, where the latter is measured in vacuum rather than in the medium. The corresponding wavelength in the medium is
\lambda = \frac{\lambda_0}{n(\lambda_0)}.
When wavelengths of electromagnetic radiation are quoted, the wavelength in vacuum usually is intended unless the wavelength is specifically identified as the wavelength in some other medium. In acoustics, where a medium is essential for the waves to exist, the wavelength value is given for a specified medium.
The variation in speed of light with vacuum wavelength is known as dispersion, and is also responsible for the familiar phenomenon in which light is separated into component colors by a prism. Separation occurs when the refractive index inside the prism varies with wavelength, so different wavelengths propagate at different speeds inside the prism, causing them to refract at different angles. The mathematical relationship that describes how the speed of light within a medium varies with wavelength is known as a dispersion relation.

Nonuniform media

Various local wavelengths on a crest-to-crest basis in an ocean wave approaching shore[11]
Wavelength can be a useful concept even if the wave is not periodic in space. For example, in an ocean wave approaching shore, shown in the figure, the incoming wave undulates with a varying local wavelength that depends in part on the depth of the sea floor compared to the wave height. The analysis of the wave can be based upon comparison of the local wavelength with the local water depth.[11]
A sinusoidal wave travelling in a nonuniform medium, with loss
Waves that are sinusoidal in time but propagate through a medium whose properties vary with position (an inhomogeneous medium) may propagate at a velocity that varies with position, and as a result may not be sinusoidal in space. The figure at right shows an example. As the wave slows down, the wavelength gets shorter and the amplitude increases; after a place of maximum response, the short wavelength is associated with a high loss and the wave dies out.
The analysis of differential equations of such systems is often done approximately, using the WKB method (also known as the Liouville–Green method). The method integrates phase through space using a local wavenumber, which can be interpreted as indicating a "local wavelength" of the solution as a function of time and space.[12][13] This method treats the system locally as if it were uniform with the local properties; in particular, the local wave velocity associated with a frequency is the only thing needed to estimate the corresponding local wavenumber or wavelength. In addition, the method computes a slowly changing amplitude to satisfy other constraints of the equations or of the physical system, such as for conservation of energy in the wave.

Crystals

A wave on a line of atoms can be interpreted according to a variety of wavelengths.
Waves in crystalline solids are not continuous, because they are composed of vibrations of discrete particles arranged in a regular lattice. This produces aliasing because the same vibration can be considered to have a variety of different wavelengths, as shown in the figure.[14] Descriptions using more than one of these wavelengths are redundant; it is conventional to choose the longest wavelength that fits the phenomenon. The range of wavelengths sufficient to provide a description of all possible waves in a crystalline medium corresponds to the wave vectors confined to the Brillouin zone.[15]
This indeterminacy in wavelength in solids is important in the analysis of wave phenomena such as energy bands and lattice vibrations. It is mathematically equivalent to the aliasing of a signal that is sampled at discrete intervals.

More general waveforms

Near-periodic waves over shallow water
The concept of wavelength is most often applied to sinusoidal, or nearly sinusoidal, waves, because in a linear system the sinusoid is the unique shape that propagates with no shape change – just a phase change and potentially an amplitude change.[16] The wavelength (or alternatively wavenumber or wave vector) is a characterization of the wave in space, that is functionally related to its frequency, as constrained by the physics of the system. Sinusoids are the simplest traveling wave solutions, and more complex solutions can be built up by superposition.
In the special case of dispersion-free and uniform media, waves other than sinusoids propagate with unchanging shape and constant velocity. In certain circumstances, waves of unchanging shape also can occur in nonlinear media; for example, the figure shows ocean waves in shallow water that have sharper crests and flatter troughs than those of a sinusoid, typical of a cnoidal wave,[17] a traveling wave so named because it is described by the Jacobi elliptic function of m-th order, usually denoted as cn(x; m).[18] Large-amplitude ocean waves with certain shapes can propagate unchanged, because of properties of the nonlinear surface-wave medium.[19]
Wavelength of a periodic but non-sinusoidal waveform.
If a traveling wave has a fixed shape that repeats in space or in time, it is a periodic wave.[20] Such waves are sometimes regarded as having a wavelength even though they are not sinusoidal.[21] As shown in the figure, wavelength is measured between consecutive corresponding points on the waveform.

Wave packets

A propagating wave packet
Localized wave packets, "bursts" of wave action where each wave packet travels as a unit, find application in many fields of physics; the notion of a wavelength also may be applied to these wave packets.[22] The wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength.[23][24] An example is shown in the figure. In general, the envelope of the wave packet moves at a different speed than the constituent waves.[25]
Using Fourier analysis, wave packets can be analyzed into infinite sums (or integrals) of sinusoidal waves of different wavenumbers or wavelengths.[26]
Louis de Broglie postulated that all particles with a specific value of momentum p have a wavelength λ = h/p, where h is Planck's constant. This hypothesis was at the basis of quantum mechanics. Nowadays, this wavelength is called the de Broglie wavelength. For example, the electrons in a CRT display have a De Broglie wavelength of about 10−13 m. To prevent the wave function for such a particle being spread over all space, de Broglie proposed using wave packets to represent particles that are localized in space.[27] The spatial spread of the wave packet, and the spread of the wavenumbers of sinusoids that make up the packet, correspond to the uncertainties in the particle's position and momentum, the product of which is bounded by Heisenberg uncertainty principle.[26]

Interference and diffraction

Double-slit interference

Pattern of light intensity on a screen for light passing through two slits. The labels on the right refer to the difference of the path lengths from the two slits, which are idealized here as point sources.
When sinusoidal waveforms add, they may reinforce each other (constructive interference) or cancel each other (destructive interference) depending upon their relative phase. This phenomenon is used in the interferometer. A simple example is an experiment due to Young where light is passed through two slits.[28] As shown in the figure, light is passed through two slits and shines on a screen. The path of the light to a position on the screen is different for the two slits, and depends upon the angle θ the path makes with the screen. If we suppose the screen is far enough from the slits (that is, s is large compared to the slit separation d) then the paths are nearly parallel, and the path difference is simply d sin θ. Accordingly the condition for constructive interference is:[29]
 d \sin \theta = m \lambda \ ,
where m is an integer, and for destructive interference is:
 d \sin \theta = (m + 1/2 )\lambda \ .
Thus, if the wavelength of the light is known, the slit separation can be determined from the interference pattern or fringes, and vice versa.
For multiple slits, the pattern is [30]
I_q = I_1 \sin^2 \left( \frac {q\pi g \sin \alpha} {\lambda} \right)  /  \sin^2  \left( \frac{ \pi g \sin \alpha}{\lambda}\right) \ ,
where q is the number of slits, and g is the grating constant. The first factor, I1, is the single-slit result, which modulates the more rapidly varying second factor that depends upon the number of slits and their spacing. In the figure I1 has been set to unity, a very rough approximation.
It should be noted that the effect of interference is to redistribute the light, so the energy contained in the light is not altered, just where it shows up.[31]

Single-slit diffraction

Diffraction pattern of a double slit has a single-slit envelope.
The notion of path difference and constructive or destructive interference used above for the double-slit experiment applies as well to the display of a single slit of light intercepted on a screen. The main result of this interference is to spread out the light from the narrow slit into a broader image on the screen. This distribution of wave energy is called diffraction.
Two types of diffraction are distinguished, depending upon the separation between the source and the screen: Fraunhofer diffraction or far-field diffraction at large separations and Fresnel diffraction or near-field diffraction at close separations.
In the analysis of the single slit, the non-zero width of the slit is taken into account, and each point in the aperture is taken as the source of one contribution to the beam of light (Huygen's wavelets). On the screen, the light arriving from each position within the slit has a different path length, albeit possibly a very small difference. Consequently, interference occurs.
In the Fraunhofer diffraction pattern sufficiently far from a single slit, within a small-angle approximation, the intensity spread S is related to position x via a squared sinc function:[32]
S(u) = \mathrm{sinc}^2(u) = \left( \frac {\sin \pi u}{\pi u} \right) ^2 \ ;  with  u = \frac {x L}{\lambda R} \ ,
where L is the slit width, R is the distance of the pattern (on the screen) from the slit, and λ is the wavelength of light used. The function S has zeros where u is a non-zero integer, where are at x values at a separation proportion to wavelength.

Diffraction-limited resolution

Diffraction is the fundamental limitation on the resolving power of optical instruments, such as telescopes (including radiotelescopes) and microscopes.[33] For a circular aperture, the diffraction-limited image spot is known as an Airy disk; the distance x in the single-slit diffraction formula is replaced by radial distance r and the sine is replaced by 2J1, where J1 is a first order Bessel function.[34]
The resolvable spatial size of objects viewed through a microscope is limited according to the Rayleigh criterion, the radius to the first null of the Airy disk, to a size proportional to the wavelength of the light used, and depending on the numerical aperture:[35]
r_{Airy} = 1.22 \frac {\lambda}{2\mathrm{NA}} \ ,
where the numerical aperture is defined as \mathrm{NA} = n \sin \theta\; for θ being the half-angle of the cone of rays accepted by the microscope objective.
The angular size of the central bright portion (radius to first null of the Airy disk) of the image diffracted by a circular aperture, a measure most commonly used for telescopes and cameras, is:[36]
\delta = 1.22 \frac {\lambda}{D} \ ,
where λ is the wavelength of the waves that are focused for imaging, D the entrance pupil diameter of the imaging system, in the same units, and the angular resolution δ is in radians.
As with other diffraction patterns, the pattern scales in proportion to wavelength, so shorter wavelengths can lead to higher resolution.

Subwavelength

The term subwavelength is used to describe an object having one or more dimensions smaller than the length of the wave with which the object interacts. For example, the term subwavelength-diameter optical fibre means an optical fibre whose diameter is less than the wavelength of light propagating through it.
A subwavelength particle is a particle smaller than the wavelength of light with which it interacts (see Rayleigh scattering). Subwavelength apertures are holes smaller than the wavelength of light propagating through them. Such structures have applications in extraordinary optical transmission, and zero-mode waveguides, among other areas of photonics.
Subwavelength may also refer to a phenomenon involving subwavelength objects; for example, subwavelength imaging.

Angular wavelength

A quantity related to the wavelength is the angular wavelength (also known as reduced wavelength), usually symbolized by ƛ (lambda-bar). It is equal to the "regular" wavelength "reduced" by a factor of 2π (ƛ = λ/2π). It is usually encountered in quantum mechanics, where it is used in combination with the reduced Planck constant (symbol ħ, h-bar) and the angular frequency (symbol ω) or angular wavenumber (symbol k).